01.05.2023 - I Prize Cash Award Winner Solution

To Prove: $O B^{2}=A B \times B R$
Construction: Join OR, BQ

Proof:

In the given figure as $\angle D=\angle E=\angle F=90^{\circ}$
\Rightarrow Quadrilaterals AECD, AFCD, AEOF are cyclic anı Quadrilaterals BEFC is also cyclic.
Let $\angle E B A=\theta \Rightarrow \angle Q C A=\theta$ [Same segment angles]
$\Rightarrow \angle Q C A=\angle Q P A=\theta \&$
$\angle Q P A=\angle Q B A=\theta$
Consider $\triangle O B F \& \triangle Q B F$

$\angle B=\angle B=\theta$
$\mathrm{BF}=\mathrm{BF}$ [common side]
$\angle F=\angle F=90^{\circ}$ [Given]
$\therefore \triangle O B F \cong \triangle Q B F$ [ASA congruency]
$\Rightarrow \mathrm{OF}=\mathrm{FQ}$ [CPCT]
New consider Δ ROF \& Δ RQF
OF = FQ [Proved]
$\angle F=\angle F=90^{\circ}$ [Given]
$\mathrm{RF}=\mathrm{RF} \quad$ [Common side]
$\therefore \Delta \mathrm{ROF} \cong \triangle \mathrm{RQF} \quad$ [SAS Congruency]
$\angle O R F=\angle Q R F \quad[C P C T]$
Now consider \triangle APR \& $\triangle O B R$
$\angle P=\angle B=\theta$
$\angle A R P=\angle O R B$
[from (1)]
$\therefore \triangle \mathrm{APR} \sim \triangle \mathrm{OBR} \quad$ [AA similarity]
$\Rightarrow \frac{A P}{O B}=\frac{P R}{B R}=\frac{A R}{O R} \quad$ [Proportionality of sides]
$\frac{B R}{O B}=\frac{P R}{A P}$
Now consider $\triangle \mathrm{OBA} \& \triangle \mathrm{RPA}$
$\angle B=\angle P=\theta$ [from figure]
$\angle O A B=\angle R A P \quad$ [V. Opp Angles]
$\therefore \triangle \mathrm{OBA} \sim \triangle R P A \quad$ [AA similarity]
$\therefore \frac{O B}{R P}=\frac{B A}{P A}=\frac{O A}{R A}$ [Proportionality of sides]
$\frac{O B}{A B}=\frac{P R}{P A}$
From (2) \& (3)
$\frac{B R}{O B}=\frac{O B}{A B}$
$\Rightarrow O B^{2}=A B \times B R$

