## 01.05.2023 – I Prize Cash Award Winner Solution

Construction: Join OR, BQ **Proof**: In the given figure as  $\angle D = \angle E = \angle F = 90^{\circ}$  $\Rightarrow$  Quadrilaterals AECD, AFCD, AEOF are cyclic and Quadrilaterals BEFC is also cyclic. Let  $\angle EBA = \theta \implies \angle QCA = \theta$  [Same segment angles]  $\Rightarrow \angle QCA = \angle QPA = \theta \&$ [Same Segment ang  $\angle QPA = \angle QBA = \theta$ Consider  $\triangle OBF \& \triangle OBF$  $\angle B = \angle B = \theta$ BF = BF [common side]  $\angle F = \angle F = 90^{\circ}$  [Given]  $\therefore \Delta OBF \cong \Delta QBF$  [ASA congruency]  $\Rightarrow$  OF = FQ [CPCT] New consider  $\Delta$  ROF &  $\Delta$  RQF OF = FQ [Proved]  $\angle F = \angle F = 90^{\circ}$  [Given] RF = RF[Common side]  $\therefore \Delta \text{ ROF} \cong \Delta \text{ RQF}$  [SAS Congruency]  $\angle ORF = \angle ORF$  [CPCT] -----(1) Now consider  $\triangle$  APR &  $\triangle$  *OBR*  $\angle P = \angle B = \theta$  $\angle ARP = \angle ORB$  [from (1)] [AA similarity]  $\therefore \Delta APR \sim \Delta OBR$  $\Rightarrow \frac{AP}{OB} = \frac{PR}{BR} = \frac{AR}{OR}$  [Proportionality of sides]

**To Prove:**  $OB^2 = AB \times BR$ 



 $\frac{BR}{OB} = \frac{PR}{AP} \qquad -----(2)$ Now consider  $\triangle OBA \& \triangle RPA$   $\angle B = \angle P = \theta \qquad \text{[from figure]}$   $\angle OAB = \angle RAP \qquad [V. \text{ Opp Angles]}$   $\therefore \triangle OBA \sim \triangle RPA \qquad [AA \text{ similarity}]$   $\therefore \frac{OB}{RP} = \frac{BA}{PA} = \frac{OA}{RA} \qquad [Proportionality \text{ of sides}]$   $\frac{OB}{AB} = \frac{PR}{PA} ------(3)$ From (2) & (3)  $\frac{BR}{OB} = \frac{OB}{AB}$   $\Rightarrow OB^2 = AB \times BR \qquad ----- \text{Hence Proved.}$ 

\*\*\*\*\*